Math 241 Sample Problems for Final Exam

Question 1 Let $f(x, y)=\frac{\sin (2 x-y)}{y}$. Find the equation of the tangent plane to the surface $f(x, y)$ at the point when $(x, y)=(2,1)$.

Question 2 Let $z=g(x, y)$ and suppose that $x(t)=t^{2}+3 t+2$ and $y(t)=e^{t}+\sin (3 t)$. Find $\left.\frac{d z}{d t}\right|_{t=0}$ if

$$
\left.\frac{\partial g}{\partial x}\right|_{(1,2)}=6,\left.\frac{\partial g}{\partial y}\right|_{(1,2)}=-2,\left.\frac{\partial g}{\partial x}\right|_{(2,1)}=-3,\left.\frac{\partial g}{\partial y}\right|_{(2,1)}=8,\left.\frac{\partial g}{\partial x}\right|_{(0,0)}=0,\left.\frac{\partial g}{\partial y}\right|_{(0,0)}=-4
$$

Question 3 Let the temperature at a point (x, y) be given by $T(x, y)=\frac{x y}{\left(1+x^{2}+2 y^{2}\right)}$.
a) Find the direction in which the temperature rises most rapidly at $(1,2)$.
b) Find the directional derivative of T at the point $(1,2)$ in the direction of the vector $\mathbf{v}=5 \mathbf{i}-\mathbf{j}$.

Question 4 Let $f(x, y)=3 x^{2} y+y^{3}-3 x^{2}-3 y^{2}+2$.
a) Find the critical points of $f(x, y)$.
b) Classify the critical points in part a) as a relative maximum, relative minimum or saddle point.

Question 5 Find the volume of the solid wedge cut from the cylinder $4 x^{2}+y^{2}=16$ below by the plane $z=0$ and above by the plane $z=y$ by evaluating an appropriate double integral.

Question 6 Evaluate the double integral $\int_{0}^{\sqrt{2}} \int_{y}^{\sqrt{4-y^{2}}} \frac{1}{\left(1+x^{2}+y^{2}\right)^{3 / 2}} d x d y$, by using polar coordinates.
Question 7 Express the triple integral: $\iiint_{R} \frac{1}{x^{2}+y^{2}+z^{2}} d y d z d x$ as an integral in spherical coordinates if R is the region bounded below by the paraboloid $2 z=x^{2}+y^{2}$, and above by the sphere $x^{2}+y^{2}+z^{2}=8$. This is a little tricky since you will need to use two triple integrals. Do NOT Evaluate the integrals!

Question 8 Let $\mathbf{F}(x, y)=\left(e^{x} \sin y-y\right) \mathbf{i}+\left(e^{x} \cos y-x-2\right) \mathbf{j}$ be a vector field defined on \mathbb{R}^{2}.
a) Show that \mathbf{F} is a conservative vector field.
b) Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is the path $\mathbf{r}(t)=(\ln (t+1) \cos (\sqrt{\pi} t)) \mathbf{i}+\left(t^{2}+\frac{1}{2} \pi\right) \mathbf{j}$, $0 \leq t \leq \frac{\sqrt{\pi}}{2}$.

Question 9 Evaluate the line integral $\int_{C}\left(x+x y^{2}\right) d x+2\left(x^{2} y-y^{2} \sin y\right) d y$ where C is the path oriented counterclockwise enclosing the region in the first quadrant bounded by $y=x^{2}$ and $y=1$ and $x=0$ by using Green's Theorem.

Question 10 Use the transformation $x=u^{2 / 3} v^{1 / 3}, y=u^{1 / 3} v^{2 / 3}$ to find $\iint_{R} \frac{x^{2} \sin x y}{y} d A$ where R is the quadrangular region bounded by the parabolas $x^{2}=\frac{1}{2} \pi y, x^{2}=\pi y, y^{2}=\frac{1}{2} x, y^{2}=x$. You may assume that $u, v>0$.

Question 11 Compute $\int_{C} \mathbf{F} \cdot \mathbf{T} d s$ and $\int_{C} \mathbf{F} \cdot \mathbf{n} d s$ for the vector field $\mathbf{F}(x, y)=(x+y) \mathbf{i}-\left(x^{2}+y^{2}\right) \mathbf{j}$ where C is the boundary of the triangle bounded by $y=0, x=1$ and $y=x$ oriented counterclockwise.

